Effect of miniscalpel-needle on relieving the pain of myofascial pain syndrome: a systematic review

Liu Tong, Peng Yuanyuan, Zhu Shipeng, Chen Huan, Li Fuyun, Hong Peixin, Cao Bingyan, Peng Bo, Fan Yifan, Chen Yupei, Zhang Li

OBJECTIVE: To evaluate the effect and safety of miniscalpel-needle (MSN) on reducing the pain of myofascial pain syndrome (MPS).

METHODS: We reviewed the available literatures inception up to February 2014 using Pubmed, EMBASE, Cochrane Library, Chinese National Knowledge Infrastructure Database, Chinese Biomedical Database and Wanfang Database.

RESULTS: Eight randomized controlled trials were finally identified. The main controls involved acupuncture, medications, injection, massage and cupping. We found that all of the studies agreed on the potential benefit of MSN as a strategy for MPS and the superiority compared to the controls, however, randomized methods applied in most of the trials could be criticized for their high or unclear risk of bias. Further research is also needed to clarify questions around the appropriate frequency and number of treatment sessions of MSN.

CONCLUSION: This review shows that MSN might have the effect on MPS, even though there were some limitations in the studies included in the review. Studies with robust methodology are warranted to further test its pain-relieving effect on MPS.

© 2015 JTCM. All rights reserved.

Key words: Myofascial pain syndromes; Miniscalpel-needle; Treatment outcome; Review

INTRODUCTION

Myofascial pain syndrome (MPS), is characterized by the existence of trigger points within muscles, it could be defined as a regional muscular pain syndrome. The myofascial trigger points (MTrPs), as Simons and Travell described, are highly localized hyperirritable spots in a palpable, taut band of skeletal muscle fibers. MPS may be the most common causes of persistent musculoskeletal pains, and it may cause many functional and psychiatric complications such as anxiety, depression, and loss of functional capacity.

There are many treatment therapies proposed for this disease, including pharmacological and nonpharmacological interventions. Pharmacological treatments consist of anti-inflammatory, analgesic and narcotic medications which is been used for symptom control. For non-pharmacological treatment we have ultrasound...
therapy, electrotherapy, stretching exercise, dry needling, acupuncture, local injection of botulinum toxin. However, all the aforementioned methods just perform a function of inactivation of MTrPs, and they will recur frequently if the underlying etiological lesion is not completely removed. Miniscalpel-needle, a new kind of needle with a sharp edge, was invented by a Chinese doctor named Zhu Hanzhang in 1976. It is rooted in traditional channel tendon theory, and its release technique combines the therapeutic role of acupuncture and microinvasive operation. It causes not only a stimulation to the acupuncture point but also a release of the taut band in MPS. Thus, it may provide successful relief of pain for a significantly long period for its release of adhesive soft tissues between the tendon sheath and the periosteum. To date, there are not any systematic reviews investigating the effect of MSN for MPS. The primary objective of this systematic review is to determine the evidence base for the potential therapeutic effect of MSN on MPS.

MATERIALS AND METHODS

Reference search
To review the existed evidence base for the effect of MSN on MPS, a systematic computerized search of electronic databases inception up until February 2014 was performed sequentially in PubMed, EMBASE, Cochrane Library, Chinese National Knowledge Infrastructure (CNKI), Chinese Biomedical Database (CBM) and Wanfang Med Online. The keywords searched were "Miniscalpel-needle", "needle knife", "small needle scalpel" or "acupotomy" combined with "myofascial pain syndrome", "fasciitis" or "trigger points".

Inclusion criteria
Randomized controlled clinical trials that assessed the efficacy or effectiveness of miniscalpel-needle for MPS were included. MSN combined with other interventions and compared with other interventions alone were also included. Main outcomes were pain intensity measured by VAS, effective rate measured by number of patients with improved symptoms, and range of motion (ROM).

Exclusion criteria
Animal studies, and duplication of published papers were excluded. Studies concentrated on comments were also excluded. Our initial aim was to appraise the immediate effect of MSN on MPS, so studies that looked at MSN combined with another therapy, such as cupping, compared with no treatment or other therapies were also excluded.

Data extraction and quality assessment
Study selection was screened independently by two reviewers based on the predetermined inclusion and exclusion criteria with disagreement resolved by discussion and adjudication. The following key information was extracted from each study: first author, publication year, study design, sample size, characteristics of participants, main acupoints/sites selected, duration and sessions of treatment, outcome measures, results reported, and adverse events.

A risk of bias assessment was conducted using the Cochrane Collaborations tool for assessing risk of bias, which included six aspects, namely, adequate sequence generation, allocation concealment, blinding, incomplete data, selective reporting, and other forms of bias. Two authors (Liu and Peng) completed the risk of bias assessment for each study independently, with any divergence resolved through discussion. Three levels naming low/unclear/high risk of bias were determined for each study according to Cochrane Handbook.

Data analysis
Binary outcomes were summarized using risk ratio (RR) with 95% confidence intervals (CI) while continuous outcomes using mean difference (MD) with 95% CI. RevMan 5.0.20 software was used for data analysis. Meta-analysis was used for the trials with good homogeneity, which was assessed by examining I² on study design, participants, interventions, control, and outcome measures.

RESULTS

After screening and scrutinising, 8 clinical studies were included in this review. Of the 8 studies reviewed, 6 studies were published in Chinese and 2 studies were published in English. Data collection process was shown in Figure 1. All of the studies were parallel design. Six trials had 2 groups and 2 trials had 3 groups. Sample size ranged from 43 to 100. All of the studies were applied in China. Only 4 trials mentioned the diagnostic criteria of MPS. All of the researchers applied MSN on MTrPs as the intervention while the controls varied considerably. Two used acupuncture, one applied acupuncture and self neck-stretching exercises, one used injection, one used medication, one used acupuncture and blocking therapy, one used medication and massage, and the last one used acupuncture and cupping. VAS was reported in two trials, effective rate was reported in six trials, and ROM was reported in two trials. A summary of the author, years, number of patients, age, intervention and control, intervention duration and sessions, outcome measures, result and adverse events were shown in Table 1.

Methodological quality of RCTs
According to our pre-defined methodological quality criteria, 7 trials were evaluated as unclear risk of bias and one was high risk of bias (Table 2). Three trials...
reported randomization procedures, but none of them described allocation concealment clearly. Blinding was unavailable in all the trials. Four trials\(^6,19,20,22\) reported dropouts, but none of them used intention-to-treat analysis.

Estimate effects of RCTs

Most of the researches could not be synthesized by quantitative method according to the variations in study quality, participants, intervention and control and outcome measures. Despite of positive results of all the studies, they can be criticized for their poor quality. Therefore, large and rigorously-designed RCTs are warranted to confirm the beneficial effect of MSN on MPS.

MSN versus acupuncture

Three trials\(^13,14,22\) compared MSN to acupuncture and applied effective rate as the outcome measures after treatment. They reached converse conclusions. Fang\(^13\) found that MSN was superior (RR 1.27, 95% CI 1.07 to 1.52, P = 0.007) to acupuncture in terms of the number of patients with improved symptom while Wei\(^14\) (RR 1.06, 95% CI 0.97 to 1.15, P = 0.19) and Zhou\(^22\) (RR 1.23, 95% CI 0.97 to 1.55, P = 0.08) didn’t.

MSN plus other treatments versus other treatments

Ma et al.\(^8\) designed the trial using three groups, MSN and SNS (self neck-stretching exercises) group, acupuncture and SNS group, SNS group. It was indicated that MSN was better than acupuncture on VAS (MD 1.80, 95% CI – 3.05 to – 0.55, P = 0.005) and ROM (MD 2.60, 95% CI 0.15 to 5.05, P = 0.04) at 3 month follow-up but no difference was found at 2 weeks.

MSN versus other treatments

One trial\(^19\) comparing MSN to injection of a mixture of lidocaine and 1.5 mL saline found significant difference on VAS and ROM at half a month, 2 months, and 3 months after treatment. However, original data was unavailable and an analysis was impossible. Three trials\(^20,23,24\) compared MSN to medication, medication and massage, acupuncture and cupping, respectively. All the trials reported significant difference in effective rate between MSN and control (Table 3).

Adverse events

No information could be seen in 5 studies\(^15,23,24\) and 2 studies\(^8,18\) reported no adverse events. 1 case of needle sickness was involved in one study.\(^20\)

DISCUSSION

Miniscalpel-needle, as a new technique has been widely applied clinically to treat various diseases in China, and could make long-term effect according to immense amount of researches. Four steps consist of incision, stripping, release and cutting are involved in the basic approach of MSN, while the most important point is paralleling to the muscle fibers, nerves and blood vessels to avoid injury.\(^16\) Compared to the filiform needle, it occupies an extra blade and a thicker body, thus accomplishing its role of acupuncture stimulation and soft tissue release. Yang\(^8\) and Zhang\(^7\) proved that thick filiform needles made strong stimulation while thin needles made weak stimulation. Therefore, MSN, coarseness of which is several times thicker than the common filiform needle, is more prone to induce a strong needle sensation and obtain excellent curative effect. In a study, Zhang and Guo pronounce that the MSN release technique is a returning to the ancients and innovation of acupuncture.\(^25\) Unfortunately, no relevant studies and application could be seen abroad.

Exactly, there has been a lot of systematic reviews examining the effect of MSN.\(^20,23\) One trial studies on frozen shoulder, two on cervical spondylosis, and another two on knee osteoarthritis. All the above reviews affirm the
Table 1 Summary of the randomized controlled clinical trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of patients</th>
<th>Age (treatment / control)</th>
<th>Intervention and control</th>
<th>Treatment duration (times)</th>
<th>Outcome measures</th>
<th>Results</th>
<th>Adverse events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma et al 2010</td>
<td>43</td>
<td>NR</td>
<td>MSN and SNS (A) vs Acupuncture and SNS (B) vs SNS (C)</td>
<td>MSN: 1 or 2 times at week 0 and 1 (1 or 2) Acupuncture: 1 or 2 times at week 0 and 1 (1 or 2) SNS: 3 times per day during 3 months follow up (90)</td>
<td>PI, PPT, ROM</td>
<td>A and B is significantly better than C in terms with both outcomes at 2 weeks and 3 months endpoints. A is better than B at 3 months follow-up only</td>
<td>NO</td>
</tr>
<tr>
<td>Wang et al 2007</td>
<td>72</td>
<td>NR</td>
<td>MSN vs Injection (a mixture of lidocaine and 1.5 mL saline)</td>
<td>Only 1 time</td>
<td>VAS, ETP, Ch, Cr, Ir</td>
<td>MSN group has significantly improvement on ETP, VAS and Ch at all time points than control group</td>
<td>NO</td>
</tr>
<tr>
<td>Wei 2001</td>
<td>60</td>
<td>24-60/23-63</td>
<td>MSN vs Acupuncture</td>
<td>MSN: 1 time a week, 3 weeks, (3) Acupuncture: 1 time a day, 5 times a week, 3 weeks, (15)</td>
<td>Effective rate</td>
<td>MSN group is better than acupuncture group and MSN shorten the curative period.</td>
<td>NR</td>
</tr>
<tr>
<td>Zhang and Lv 2008</td>
<td>62</td>
<td>17-55</td>
<td>MSN vs Medication (chlorzoxazine)</td>
<td>MSN: only 1 time Medication: 2 tablets a time, 3 times a day, 1 week, (21)</td>
<td>Symptom score, EMG, Effective rate</td>
<td>MSN group is better than control group on effective rate, but don’t report EMG and symptom score</td>
<td>1 case of needlesickness</td>
</tr>
<tr>
<td>Fang 2007</td>
<td>46</td>
<td>26-64/31-66</td>
<td>MSN vs Electro-acupuncture</td>
<td>MSN: 1 time a week, 3 weeks, (3) Electro-acupuncture: 1 time a day, 3 weeks, (21)</td>
<td>Effective rate</td>
<td>MSN is better than electro-acupuncture.</td>
<td>NR</td>
</tr>
<tr>
<td>Zhou et al 2009</td>
<td>100</td>
<td>25-65</td>
<td>MSN vs Acupuncture vs Blocking therapy</td>
<td>Only 1 time</td>
<td>Effective rate</td>
<td>MSN is better than acupuncture at 1st week, and 3rd month, but only superior to blocking therapy at 3rd month</td>
<td>NR</td>
</tr>
<tr>
<td>Han et al 2011</td>
<td>100</td>
<td>25-58</td>
<td>MSN vs Medication and massage</td>
<td>MSN: 1 time a week, 4 weeks, (4) Medication: 1 tablet a time, 2 times a day Massage: once every other day, 10 times a course, 3 courses (30)</td>
<td>VAS, Effective rate</td>
<td>MSN is better than the control in terms with both the outcomes</td>
<td>NR</td>
</tr>
<tr>
<td>Zhao 2012</td>
<td>80</td>
<td>46.74/47.20</td>
<td>MSN</td>
<td>MSN: 1 time per 5 days, 15 days (3) Acupuncture and cupping: 1 time a day, 10 days (10)</td>
<td>Effective rate</td>
<td>MSN is better than the control</td>
<td>NR</td>
</tr>
</tbody>
</table>

Notes: NR: not reported; MSN: miniscalpel-needle; SNS: self neck-stretching exercises; VS: versus; PI: pain intensity; PPT: pressure pain threshold; ROM: range of motion; VAS: visual analog scale; ETP: evaluation of the Trigger Points; Ch: contralateral bending; Cr: contralateral rotation; Ir: ipsilateral rotation; EMG: electromyography; NO: no adverse events.
effect of MSN. This review firstly identifies and analyses the effect of MSN for MPS. As most of the trials report positive results, it seems that MSN appears to be effective for MPS, and is superior to acupuncture, medications and injection. However, it should be interpreted with caution because of high risk of bias. Only eight trials with 670 patients were involved in this review, seven of which were evaluated as unclear risk of bias, and the last one had high risk of bias. Although three trials reported randomization, no trial described allocation concealment. Definite information of blinding was not available in all the trials. Despite difficulty in blinding patients with regard to MSN, the method of blinding can be practiced on those in charge of evaluating outcome indices and data. Four trials reported dropouts, but none of them used intention-to-treat analysis. The safety has become a primary issue and a top challenge of the development of MSN. However, only three trials reported adverse events, no information was available in other five trials. There are a few limitations in our review. Firstly, the overall quality of the included studies is not satisfied. The results of most studies should be interpreted carefully due to missing information on randomization concealment and blinding method, and inappropriate methods for dealing with missing data. Then, samples are too small in the included studies, which will result in a lack of statistical power. However, too many samples will consume manpower, resources and time, consequently, calculation of the sample is warranted.

Table 2 Risk of bias assessment for the included studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Adequate sequence generation?</th>
<th>Allocation concealment</th>
<th>Blinding of participants, personnel, and outcome assessor</th>
<th>Incomplete outcome data?</th>
<th>Selective outcome reporting</th>
<th>Other sources of bias?</th>
<th>Risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma et al.</td>
<td>Computer-generated</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Unclear risk of bias</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Low</td>
<td>Low</td>
<td>Unclear risk of bias</td>
<td></td>
</tr>
<tr>
<td>Wei.</td>
<td>Table of random numbers</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Low</td>
<td>Unclear risk of bias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang et al.</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>High</td>
<td>Unclear risk of bias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fang.</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Low</td>
<td>Low</td>
<td>Unclear risk of bias</td>
<td></td>
</tr>
<tr>
<td>Zhou et al.</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Low</td>
<td>Unclear risk of bias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Han et al.</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Low</td>
<td>Unclear risk of bias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhao.</td>
<td>Registration order</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Low</td>
<td>Unclear risk of bias</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Effect estimates in 8 RCTs

<table>
<thead>
<tr>
<th>Item</th>
<th>Trial</th>
<th>Comparison</th>
<th>Effect estimate (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numbers of patients with effective symptoms after treatment</td>
<td>Wei.</td>
<td>MSN versus Acupuncture</td>
<td>RR 1.06 [0.97, 1.15]</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>Zhou et al.</td>
<td>MSN versus Acupuncture</td>
<td>RR 1.23 [0.97, 1.55]</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>Fang.</td>
<td>MSN versus Acupuncture</td>
<td>RR 1.27 [1.07, 1.52]</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Zhang et al.</td>
<td>MSN versus Chloroxazone</td>
<td>RR 1.12 [0.96, 1.30]</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>Zhou et al.</td>
<td>MSN versus Blocking therapy</td>
<td>RR 2.05 [1.09, 3.86]</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>Zhao.</td>
<td>MSN versus Acupuncture and Cupping</td>
<td>RR 1.33 [1.11, 1.59]</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>Han et al.</td>
<td>MSN versus Medications and Massage</td>
<td>RR 1.23 [1.06, 1.41]</td>
<td>0.006</td>
</tr>
<tr>
<td>Visual analogue scale</td>
<td>Ma et al.</td>
<td>MSN and SNS versus Acupuncture and SNS</td>
<td>MD – 1.80 [–3.05, –0.55]</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>Ma et al.</td>
<td>MSN and SNS versus SNS</td>
<td>MD – 3.70 [–4.88, –2.52]</td>
<td><0.000 01</td>
</tr>
<tr>
<td></td>
<td>Han et al.</td>
<td>MSN versus Medications and Massage</td>
<td>MD – 1.66 [–2.00, –1.32]</td>
<td><0.000 01</td>
</tr>
<tr>
<td>Range of motion</td>
<td>Ma et al.</td>
<td>MSN and SNS versus Acupuncture and SNS</td>
<td>MD 2.60 [0.15, 5.05]</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>Ma et al.</td>
<td>MSN and SNS versus SNS</td>
<td>MD 3.70 [0.82, 6.58]</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Notes: RCTs: randomized controlled trials; MSN: miniscalpel-needle; SNS: self neck-stretching exercises.
In conclusion, the findings of this review suggest that MSN was more effective for MPS than acupuncture, medications and injection though there were some limitations in the studies included in the review and nearly all of them was evaluated with unclear risk of bias.

REFERENCES

